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1. INTRODUCTION

Modermn scientific and engineering projects have become too complex and costly to be carried out with
just the old-fashioned "trial and error” approach. Therefore, it is imperative that such projects first be
modeled and verified mathematically. Unfortunately, due to the complexity of these projects, the
mathematical modeling seldom can be done entirely in analytical forms. As a consequence, one must
resort to "approximate” methods; that is, methods which either entirely or partially use numerical methods
when modeling the project. The most popular approximate methods in use today are the finite element
and the finite difference methods. A new method is the finite-volume method, however, it is not yet very
popular in modeling; this is very likely due to the fact that, as the models go, it is rather laborious to use.
Consequently, in this brief description, attention will be paid more to finite element and finite difference
methods than to the finite volume method. The emphasis here is to give an overview of these methods

so that interested readers can pursue details in the literature on their own.

In section 2, some basic notions and applications of finite element and finite difference methods are
given. Here also the finite volume method is briefly described. Merits of one vs. the other method are
discussed in section 3. Section 4 is mainly devoted to a listing of possible potential applications of these
methods, and contains the discussion and conclusion. In the appendix, listings of the available literature

on these methods are given.
2. EXPOSITION OF THE METHQDS

Here simple applications of finite element and finite difference methods are described, while a brief

overview of the finite volume method is given.

2.1 Finite Element Method. A mathematical model of a physical system normally involves a number

of variables and functions f,,(X) representing fields, velocities, etc. Here X represents the coordinates
of the domain. The problem is that the exact function f, (X) is not known for all the points X. Hence,

one introduces an approximation of f,,(X), denoted simply as f(X). The error function e (%),

eX) = f(X) - {,X), (2.1.1)




measures the quality of the approximation. To construct an approximate f (X) it suffices to: (1) write an

expression containing n parameters a,,

£@) = £(; ap, ...\ ), (2.1.2)

and (2) relate (determine) these parameters to n values of f,,(X) in the domain, which may be known or
may still have to be determined by some other methods (Dhatt and Touzot 1984). Formally, this may be

achieved by forcing the error function e (X) to be zero at "n" points in the domain.
The question that immediately arises is how to construct the approximate function f (X; a;, ..., a,),
dependent on parameters a;, i = 1, ..., n. Rather frequently, an approximation function is chosen to be

a linear function of parameters a;, i = 1, ..., n:

n

fX) = E a;P;(X), (2.1.33)
i-1
()
4
7}
f@ =<PX P,X)..P, X > X (2.1.3b)
\a“/
or in shorthand,
fX) =<P®@ >@y), (2.1.3¢c)

where P;(%), i = 1, ..., n, are linearly independent complete sets of functions. In the finite element
method, P’s have been chosen as polynomials, although other sets of functions may be used. Parameters

a;, i = 1, ..., n, are the generalized parameters of approximation.




Unfortunately, parameters a; generally do not have a direct physical meaning. Thus, as far as the finite
element method goes, they are conveniently replaced with nodal values of the function f, (%) at, S3Y> M
points with coordinates X,, X,, ..., X,. The nodal approximation is further required to satisfy the

following relations:

fx) =f, ®)="f,i=1,2,..,m. 2.14)

Hence, the approximate function f(X) can now be written as

n
fX) = Z N; ®f; (2.1.53)
i=1
\
f;
f,
=<N; &) NyX) ... N, K > , (2.1.5b)
f
m)
or, in shorthand notation,
fR =< NQE > (. . (2.1.5¢)

Here f;, i = 1, 2, .., m, are nodal parameters, and functions N(X) are called (nodal) interpolation

functions. Clearly, consistent with relations (2.1.4) and (2.1.5), one has

Nj (%)) = &, e (X)) = 0. 2.16,7)

ij




Understandably, for some approximate function the generalized approximation (2.1.3) and the nodal
approximation (2.1.5) must be equal. Hence < P(X) > and < N (X) > must be related to each other.
First of all from relation (2.1.3) one can write,

F,=<PX) >@,i=1,2,.,mn. (2.1.8a)

In matrix form the same thing is written as

( - -
f - - a
f; < Pl (Xz) Pz (Xz) vee Pﬂ (5(‘2) > a;
- " ' at (2.1.8b)
fm XYy an)
\< PR P& - Po(xm) >)

where one should notice that the matrix itself is not generally a "square" matrix. In a shorthand notation,

this relation is rewritten as
() = [P] (@y. (2.1.8¢c)

However, unless something explicit forbids it, one may choose the number of P-functions and the number

of nodal points to be the same.

Relations (2.1.8) relate nodal parameters f;, i =1, 2, ..., m, and the generalized parameters

a;, j =1, 2, .., n. Substitution of (2.1.8c) into (2.1.5b), after comparison with (2.1.3), yields

<PR >=<N®) > [P], 2.1.9)




and

<N® >=<P® > [Q], [Q] = [P]L. (2.1.10a,b)

Since the P-functions can be chosen as simple polynomial functions, it is relation (2.1.10a) that is of real

value; it defines the interpolation (nodal) functions in terms of P’s. The problem, however, is evaluating

the matrix [Q].

The following is an example of the construction of interpolation functions for the simplest of the
elements, the linear (two nodes) element; it is linear because we take the number of polynomial basis
functions to be equal to the number of nodes: n=m =2. The one-dimensional (1-D) two-node elements

are exhibited in Figure 1.

x1 x2 X

Figure 1. The 1-D two-node element.

The polynomial basis functions are given by a two-component vector:

<PX)>=<Px) P,(x)>=<1x>. (2.1.11)

According to (2.1.8b and c) the matrix [P] is




1 x4
Pl = I

This matrix can be easily inverted with the result

_ 1 Xs —Xj B - B
[Q] = .Ei:_l 1 }, D= det[P] x2 Xl.

Consequently, from relations (2.1.10a), the interpolation functions are

1 X2 X1
<NE>=<NXxN,x>=— —_<1Ix> A
(X — x9) [—-1 1 :l

giving specifically,

X=X

Xy — X
Ni®) = 2 Ny (%) =
X X

One verifies explicitly relation (2.1.6) in this case.

The function f,, (x) can now be approximated with f(x) in the interval x; < X < X;:

1
f(X) = —(xz—_—;)-[(xz - xl)fl + (X - Xl) fZ]'

To be specific, choose for the nodal points:

xl'—-O,XZ:.ZZC_,

(2.1.12)

(2.1.13)

(2.1.14a)

(2.2.14b)

(2.1.15)

(2.1.16a)




with which the following interpolation functions are associated:

N;(x) = X.

alwe
alv

(; - x), N, (%) =

Their plots are shown in Figure 2.
Nl' N2

1
0.8¢

0.6

L

(2.1.16b)

0.25 0.5 0.75 1 1.25

. x
1.5

Figure 2. The interpolation functions N, and N, associatea with the two nodal points x; = 0 and x, =

1t/2, respectively, for the 1-D two-node element.

Next, let us see how f(x) approximates f,,(X) = cos x with these two nodes, relation (2.1.16b). We have

fex(xl = O) = COSXl =1= fl’ fex(XZ = _125)': COSXZ = 0 = f2,
giving,

2(m
fx) = Z | -x|, X, £x <X,
(x) x[z ] 1 2

7

(2.1.16¢)

(2.1.16d)




From the plots (Figures 3 and 4) we see that the agreement is not perfect.

£ix]

Figure 3. Approximation of f(x) = cos x by two interpolational functions associated with the 1-D two-
node element. Comparison with Figure 4 shows that the agreement is not perfect.

Figure 4. Plot of cos x between x = 0 and x = /2.

8




The reason for this, of course, is that the number of nodal points is too small.

To improve on the approximation, let us take three nodes, X;, X5, and x5. The polynomial basis is

now given by the three-component vector:
<P®)> =<1, x, x?>. 2.1.17)

Following the previous example (see also (2.1.8a)), one also writes down the matrix

1 x4y x%
[P =1 x, x2}| (2.1.18)

2
1x3x3

Unfortunately, the expression for [Q] is too long to be given in a general form. However, for the nodal

points

T T
x; =0, =, =_, 2.1.19a
1 =g B3 ( )
the expression is

(1 0 0]

6 8 2
Q= ® = T | (2.1.19b)

8 _16 8
7 2 2

From

<N(x) > = <N;(x), Ny(x), N;(x)> = <P(x)> [Q], (2.1.19¢)




we obtain

2 2 2
6x N 8x 8x 16x 2x 8x . (2.1.19d)
T b7

The plots of these functions are shown in Figure 5.

N1{x], N2[x],N3[x]

1
0.8}
0.6f
0.af
0.2}
0.25 0.5 75 1 1.25 1 x
-0.2

Figure 5. Interpolation functions N;, N,, and N, associated with the three nodal points x, = U,
X, = /4, and X, = 1/2, respectively, for the 1-D three-node element.

Now £, (x) = cos x yields

f,(x, =0)=1=f], fex[xz - ;) - Lz =, fex(x3 - ;) =0=1f,, (211%)

yielding

10




+_1_[__
A

(2.1.191)

8x 16x2 :l

The plot of f(x) is shown in Figure 6. The agreement with the plot for cos x from Figure 4 is now much
better.

0.25 0.5 0.75

1.25 1.5

[ Y 8

Figure 6. Approximation of f(x) = cos x by the three interpolation functions associated with the 1-D
three-node element. The agreement with Figure 4 is now excellent.

Now we take an example in the two-dimensional (2-D) space. In order to simplify the discussion, we

specify the nodal points from the beginning:

T =(L1), T, =(-1,1),1; = (-1,-1), T, = (1,-1), (2.1.20)

where in general T = (x,y). The element associated with these four nodal points is referred to as a 2-D

four-nodal quadrilateral element, m = 4. Its plot is exhibited in Figure 7.

11




(-1,1) (1.1)

(-1.-1) (1,-1)

Figure 7. 2-D four-node quadrilateral element.

(Because of the way the nodal points are chosen, this and other elements like this one are also referred

to as "reference elements"). As far as the polynomial basis functions are concemed, they are defined

through the four-component vector (n = 4):
<P(M>=<1,x,y, Xxy>. (2.1.21)

Following the general prescription for constructing the interpolation functions, with the help of
<P(¥)> =<1, X, y, Xy> evaluated at positions of nodal points, we first write down the four-by-four

matrix

111 1
er=0 0P, (2.1.222)

1 -1 -1 1

1 -1 1 -1

12




which when inverted yields

11 1 1
T I (2.1.22b)

Z11 1 -1 -1

1 -1 1 -1

Now applying now relations (2.1.22b) and (2.1.21) to relation (2.1.10a) one obtains the following

expression for the interpolation functions:

1
Nj®y) = 3 (e x ey ), Npxy) = o (=% +y = x),
1 1
N3(X,Y) = -Z (1 ~-X=-y+ XY)’ N4(X,Y) = '2- (1 +X=-y- XY) (2-1-220)

In Figure 8, the first of these four functions is displayed. The other three are obtained by rotating the x-y

plane about z-axis clockwise by .ch_, 2.;‘., and 3; angles, respectively.

To demonstrate how things work in’ the 2-D space, we choose for the exact function the expression:
for (X,¥) = exp[~(x + y)]. (2.1.23a)
From relations (2.1.20) the nodal parameters are:
f,=e2=0.13534,f,= 1, f; = €? = 7.38906, f, = I; (2.1.23b)
yielding on this element for exp [-(x + y)] the appropriate expression:
f(x,y) = 0.135 N;(x,y) +Ny(X,y) + 7.389 N3(x,y) + Ny(x,y). (2.1.23¢)

The plots of f,, and f are exhibited on Figures 9 and 10, respectively.

13




o SN
T Ay
7/ A

Figure 8. Interpolation function N, associated with the nodal point T, = (1,1) of the four-node
quadrilateral element. The interpolation functions N,, N3, and N, (associated with the nodal
points T, = (=1,1), ¥, = (-1~-1), and ¥, = (1,-1)) are obtained from N, by rotating the
x-y plane clockwise about the z-axis by n/2, 2r/2, and 3r/2 angles, respectively.

BN (= (xt+y))

Figure 9. Plot of exp [—(x + y)] in the region -1 <x, y < 1.

14




Figure 10. Approximation of exp [—(x + y)] by the four interpolation functions associated with the
quadrilateral element from Figure 8.

The agreement is quite good, taking into account that we used only four nodal points, which is not a large
number for the 2-D space. If the number of nodal points is increased at least by one, the agreement would

be perfect.

Of course, there are many more elements that one can consider, not just in 1- and 2-D spaces, but,

in fact, in an arbitrary dimensional space. However, such a study is beyond the scope of this report.

Finally, we illustrate briefly how to solve a partial differential equation by finite element method. To
be specific, we treat Poisson’s equation in the 2-D space defined over a square region (which is actually
the quadrilateral element from the previous example) with a constant surface "charge density" ¢ (consult

Figure 11 for details).

15




Figure 11. Square region with a constant surface charge ¢ generating the solution f from the Poisson
equation in 2-D space. At the boundary, the solution f is required to vanish.

We write the differential equation as follows:

9@ + 0 = T P&y oo (2.124a)
ox? dy?
where
o#0: -1<x<1,-1<y<1; 0 =0 elsewhere. (2.1.24b)
One easily sees from equation (2.1.24a) that the solution possesses the following symmetries:
f(x,y) = f(y,x); f(x,y) = f(-x,y) = f(-x,-y) = {(x,-y). (2.1.24¢)

Furthermore, we also require that f satisfy these boundary value conditions:

16




f(x1,y) = f(x,x1) = 0. (2.1.244d)

Because of the symmetry and the boundary value conditions, representation of f in terms of a just-derived
four-node quadrilateral element would not be enough; one would have to construct at least a five-node
element. However, rather than do that, let us actually exploit the symmetry of the problem, and instead
of interpolation functions, use the polynomial functions as discussed at the beginning of this section. To
simplify the discussion, we use just two of them; the simplest ones that satisfy conditions of symmetry

and the boundary values are:
Pi(x,y) = &2 - 1) (4% - 1); Pyx,y) = x% + y9) Py(x.y). (2.1.252)

Their plots are shown on Figures 12 and 13.

0.75
plix,yl
0

Figure 12. Plot of the lowest order polynomial function with the same symmetries as the function f from
Figure 11.
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Figure 13. Plot of the second lowest order polynomial function with the same symmetries as the
function f from Figure 11.

These functions allow us to express the f in terms of two generalized parameters of approximation a; and

4.

a
f(x,y) = < Py(x,y) Py(x,y) > a; = Pi(x.y) 3, + P,(x,y) 2,. (2.1.25b)

One notices that now the differential equation (2.1.24a) decomposes as

L) = 4, L@ + 3, 9P, L@y = 2(x* + y? - 2),

206x2 - 1) (y2 - 1) + 26y% - 1) x%2 - 1)

9(P,)

+2x% - x? + 2(9% - xd). (2.1.25¢)

18




The problem now, of course, is to find a; and a,.

In order to determine a; and a,, we choose two collocation points (points inside the square where

o #0):

11
T =00),7=|_.—| 2.1.26a
1 = 0,0) (2 2] ( )

and define, in general, the weight functions

Wi = (&) + 0)y, = (2, 2@ + ,L(Py) + 0)z; W; = 0. (2.1.26b,c)

The statement (2.1.26¢) means that the differential equation is satisfied exactly at the collocation points.

One obtains explicitly

W, = —4a, +4a, + 0 = 0, W, = —3a, -%az +0 =0, 2.1.273)

with solutions

a; = 029760, a, = 0.04760. (2.1.27b)
This gives
£(x,y) = 029766 (x2 - 1) (y2 = 1) + 0.0476 X% + y2) x%2 - 1) (y2 - 1). (2127¢c)

The function f is shown in Figure 14 for ¢ = 1.

19




Figure 14. Plot of f, the approximate solution of the 2-D Poisson equation with the unit surface charge
density, o = 1.

Our result compares very well with the one obtained from the Fourier series expansion. Specifically,

from there one obtains for f at T = 0 the value:

Fourier Series: f(f = 0) = 0.29760. (2.1.27d)

On the other hand, directly from solution (2.1.27c), we have

f(f = 0) = a; = 029760, (2.1.27¢)

which is practically the same as the Fourier series result.

Although rather simple, the few examples chosen here illustrate clearly the power of the finite element
method. The interested reader can find more involved examples in a rather extensive survey of the

literature, some of which is listed at the end.

20




2.2 Finite Difference Method. In the finite difference method, as the name would indicate, one uses
differences of functions, variables, and the like, in order to obtain approximate solutions to mostly
differential equations. In finding numerical solutions, the difference operators are used in a manner similar

to that of differential operators in the differential equations (Hovanessian 1976).

In order to define various difference operators, we consider a function y = f(x) as shown in Figure 15

with equal intervals Ax for an independent variable x.

y=f(x)

yi+1

yi

yi-1

- AX - AX

xi-1 Xi Xi+1 X

Figure 15. Definition of the equal interval Ax from which the forward, the backward, and the central
differences of y(x) are defined.

There are three kind of differences: the forward, the backward, and the central difference, respectively.

The first forward difference of y; is defined as

Ay;i =¥i+1~ Vio 2.2.1)

21




where formally A is the forward difference operator. Clearly, for the second forward difference operator

we have
A%y; = AQAY) =AY o1 - AY; = Va2 2% 1 * Ve 222)
By similar reasoning one obtains for the third forward difference operator expfession
Ay, = AA%Y) =Y; 53— 3% .2+ 3,1~ Vi (22.3)
These two equations clearly exhibit the operational nature of A.
The first backward difference of y; is defined as
Vyi =¥ - Vio1 224

where formally V is the backward difference operator. The second backward difference operator can be

obtained from the first:
Vi, = V(Vy) = Vy; = Vy; _ 1 = ¥i-2Y; -1 + Vi- 2- (2.2.5)
Similarly, the third backward difference becomes
V3y, = V(V2y) = y; = 3% -1 +3¥i-2- Vi3 (2.2.6)

The first central difference of y; is defined as

8y; =y,1 -5, 1 (22.7)
T 7

22




where & formally denotes the central difference operator. The second central difference operator is

obtained from the first:
&y; = 8(3y;) = 5(yi L1V, 1]
2

=y, 1, 1-Y 1 _ 1=y, 1, 1-Y¥%_1_1
) 2z 2 z Z Z 2

=Yi+1-2Y;*+Yi-1 (2.2.8)

Similarly, third and fourth central difference operators are obtained:

8%y, = 8(&%y) = Y,,3-3Y,1+3y,_1-Y,_3, (2.2.9)
2 2 2 2
8y, = 3(BY) = Vi ,2- Vi 2+ 6V -4V +Vion (2.2.10)
Denoting generically with Q the three difference operators, one verifies directly that
@y = Q). 22.11)
By induction one further obtains
Q=0 =05 =1, (2.2.12)
and very important distribution laws
Qy; + z) = Qy; + Qz;, 2.2.13)

Qconsty; = const{y;. 22.14)




Next, we wish to establish the relationship between difference and differential operators. To this end,

define first the symbolic difference operator E as follows:

+
Ey; =% . E7¥i=v%i-0vE %y=vy, 1. 2.2.15)
11_2

NI»—‘

One should notice that these relations are consistent with each other. Some important relations involving

E are:

E const = constE,

EQ=QE,E"Q=QE", (2.2.16)

where const and n are independent of x. Using these relations, one obtains difference operators A, V, and

d in terms of E

Ay;=E - Dy;»A=E-1,
Vy;=(1-EDy, »V=1-E7,
e .
Syi= EZ—E 2yiH6=E2—E 2. (2.2.17)

The relation between the forward difference operators and the differential operator is obtained by

writing Taylor’s series expansion of the function f(x + h) about x.

oo

n
fx+m =Y M Dofx) =effx), D=L, 2.2.18)
n=0 n! dx
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But

Ef(x) = f(x + h) » E = P, D = Ef. (2.2.19)

Now we are ready to find a relationship between difference operators and D. Starting with A, from

relation (2.2.17) we have

A=E—1=ehD—1,D=T11_1n(1 + A). (2.2.20)

The useful relations are obtained when one expands (2.2.20), yielding:

2 3
A=tD+ 2 p2,0°p3, (2.221)
2 31
and
2 3 4
p=la_A A _4&, 1| (2.2.22)
h > 3%

Higher-order derivative and forward difference operators are obtained by taking various powers of (2.2.20),

resulting in the following second- and higher-order operator equations:

A2 =1h2D2 + h3D3 + %h“p“ ‘o, (2.2.232)

A3 =h3D3 + .g.h4D4 " %hsDS .o (2.2.23b)

D2=_L[a2-pa3 s Mpat_ 345, | (2.2.242)
h2 12 6
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p3=_L([a3_3p0_35A5, ) ' (2.2.24b)
03 7 3

D4 = _I_Z[A4 _2A5 4 _161A6 - ) (2.2.24¢)
b

Equations (2.2.21) to (2.2.24) can be used to find the differentials of functions in terms of available
functional values. For example, neglecting errors of order h and higher, Dzyi can be obtained from
(2.2.24a). Dropping A3 and higher-order terms from this equation and using (2.2.2), one obtains

1 1
D%y, = FAzyi = -h—z(yi +2- 2% 41 % yi). (2.2.252)

A faster way to obtain this result is to use (2.2.20):

1

1 1
D?y; = FA%’i = F(l - By, = F(Yi “2¥i.1* Viea) (2.2.25b)

The backward difference operator can be obtained in terms of the differential operator D with the aid
of equation (2.2.17). In fact, from the relations (2.2.17) and (2.2.19) one has

V=1-El=1-¢™ D= —%ln(l - V). (2.2.26.27)

Taylor’s expansion yields for V the result

2 3
V =hD - %DZ + %_D3 _ (2.2.282)

Taking higher powers of relations (2.2.21a,b) we obtained higher-order difference and derivative operators.

These are summarized as follows:
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V2 = 12D2% - h3D3 + T72_h4D4 _ (2.2.28b)

V3 =hn3D3 - .g_h"’D“ + %hSDS - (2.2.28¢)
D - %{v . _‘72_2 . _V;_ . _Y4_4 . J (2.2.292)
D2 - # (vz V3. %V“ . %VS . J (2.2.290)
D3 = %(V’J‘ . _§_V4 N ;V5 + ] (2.2.29¢)

D4 = .}11_4[V4 +2V5 4 1_67v6 " ] (2.2.29d)

The equations relating the central difference operator 6 and differential operator D are obtained using
equations (2.2.15) and (2.2.19).

-E %, E=¢" 4=_mE. (2.2.30)

11
u = %[137 +E 2). 2.231)
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This implies

pd = (E - E'l) = l(e D _ e'hD) = sinh(hD). (2.2.32)
2

Applying the difference operator pd to y;, we obtain

1
@8)y; = 7(yi e1- Vi) 2.2.33)
From (2.2.31), we have
2 1( -1 ) &
p° = T E+E7 42} =1 + e (2.2.34)

The Taylor series expansion of the right-hand side of (2.2.32) yields

313 515
h"D” "D, (2.2.35)

o =hD +
H 120

The general expression for &", where n = 1, 2, 3, ..., can be obtained from relation (2.2.30).

D _hD
5=¢c2 —¢ T=2sinh.hTD,
&% = 20 sinh? 322 (2.2.36)

By similar reasoning, we obtain from (2.2.31) forn =1, 2, 3, ..,
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hD
= cosh —,
H 3

" = cosh ™ _h2]3 (2.2.37)

Using the combinations of the aforementioned relations, we can obtain expressions for higher powers

of central difference operators, as for example
n8 = @8) 82 = sinh hD 22 sinn2 PP

n3D3 D’
+ + ...
40

=hD3 + (2.2.38)

Similarly, from (2.2.36) one obtains

616 88
§*=np*+ D ,BD" (2.2.39)
5 %0

The differential operators D are obtainable in terms of central difference operators 8. For example,
from (2.2.32) and (2.2.35) we have

L 1 & & '
h~1ué = §- RO L BO _ | 2.2.40
sinh™'p [p = * 5 ] ( )

4 6
D2 = _17[52 - f_z . % - J (2.2.41)
h
5 7
p3 = _113_[53 - % + 7%6 - J (2.2.42)
h




6 8
D4 = _1__[84 _& I8 ] (2.243)

Although not exclusively true for all cases, when numerically solving differential equations, one tends to

express differential operators D in terms of difference operators 6.

As an example of application of the aforementioned equations with difference operators 6, we seek

the numerical solution of the differential equation

: + dt + y + “, y([ = ()) = 1, ( yl t) (t = ) - . ( ol ] )
dt

Using differential operator D = d/dt, this differential equation translates into
Dzyi +Dy; +y; =0, yp=1,Dyy =0. (2.2.45a,b,c)
Denoting At = h and containing relations (2.2.30) and (2.2.31) with relations (2.2.40) to (2.2.43), we obtain

DYv= yi.,.l"'Yi_l; Dzy.= Yi_l—ZYi+Yi+1

- 2
Ty i = , e =09, (2.2.46a,b)

where e stands for "error” and denotes the order in h of terms that are neglected. Substituting relations

(2.2.46) into (2.2.45a), we obtain a recursive relation for y; , ;, as follows:

ie17 . h[(‘* ~2n%y, 4 (h-2)y,_ 1]. (2.2.47)

+

This equation gives y; , ;, providing the values of y; and y; , are available; for these the initial conditions

will be helpful. The condition (2.2.45¢) gives
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Y1 = Y4

DYo = —

=0, y.,=Y1- (2.2.48)

We inserted y_; in order to make the derivative at y, symmetrical. Formally, y_; can be related to the
second constant of integration. In any case, setting i = 0 in (2.2.47) and using yo =1 and y_; = y;, we

obtain

1 h?
1= h[(4 - 2h2) +(h - 2)y1] -y =1 - - (2.2.49a,b)

Selecting the value for the increment h, we obtain a numerical value for y;. Thus we will have y, and
¥;» and we can proceed with the calculation of y, by setting i =2 in (2.2.47). Similarly, we can calculate
Y3, ¥4» and so on. The values yq, y1, Yo, Y3, - Will represent the solution of the differential equation

(2.2.44) at discrete time intervals of i At =ih wherei=0, 1, 2, 3, ...

Already we see the possible problems with the finite difference method solutions of differential
equations. If At is too small, a great number of iterations will be required to obtain the value of y at a
given time. On the other hand, if At is too large, since the error is of the order of (At)? = h?, the error

in each application of (2.2.47) may accumulate, resulting in large errors in the solution.

Next we discuss a simple case of numerical solution of a differential equation starting from the Taylor

series expansion. Consider the first-order differential equation

y' =Y - fxy), (2.2.50)
dx

with the initial condition y = y, at x = xq. The Taylor series expansion of y about x,, using an increment

Ax, yields

y(Xg + AX) = yq + Axyé + %(Ax)zyé + e 2.251
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Taking the first two terms from the series, we obtain (see Figure 16),

y(xo + Ax) = yg + Axyg

(2.2.52)
=Yy + Axf(xo, yo) .
y
yi+1
yi
yo
h
X0 Xi Xi+1 X

Figure 16. Graphic representation of the evolution of y(x), the solution of the first-order differential
equation, in terms of h = Ax.

Denoting x; = X + Ax and x, = X; + Ax with corresponding y; = y(Xy + Ax) and y, = y(X; + Ax), we

may write

Y1 =VYo *+ Axf(xo,yo),

Yo =Y * Axf(xl,yl),

Ya+1 = Ya + AxE(xp ) 2253)

32




The error is simply the next term in the expansion (2.2.51):

2 2
o= Ly - 40 [g{- R f.g_i) (2.2.54)

The error in this case is directly proportional to the square of the increment Ax and to the combination
of function f(x,y) and its partial derivatives, with respect to x and y at the position (x,y) = (X;,y;),1 =1,
2,3, .,

Example: Consider the numerical solution of the first-order differential equation

% =y = ywithy =1atx=0. (2.2.552)
X

The solution is given exactly as
y=¢e™X (2.2.55b)
Denoting with Ax = h, from relations (2.2.53), one immediately sees that
¥, = 1-nh, (2.2.56)

which is a good approximation of exact solution (2.2.55b) if x, = nh < xf .

Another way to solve this differential equation numerically is to use the finite difference
representation. Namely, the derivative of y at x,, is equal to the slope of the curve of Figure 16 at this
point. This slope can be represented by either

Yo = (ne1-ya)h, (2.2.57)
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or

Yn = (Yas1=Ya1)2h, (2.2:58)

where, of course, h = Ax. One recognizes equations (2.2.57) and (2.2.58) as the forward and central

difference equations of the first derivative. Therefore, consistent with relation (2.2.55a) one may write

1
(yn +17 yn)/h ==Yy Yo=1h= T (2.2.59)

- 1
(Yn +17 Yn—l)/Zh ==Yw Yo = l,yy=e 1/4’ h = 7T (2.2.60)

Formulation (2.2.59) is the forward difference formulation with increment h = 0.25. Formulation
(2.2.60), however, is the central difference formulation, also with h = 0.25. Now, in formulation (2.2.59),
we can set n = 0 and solve for y;. Formulation (2.2.60) will require both y, and y, to start the problem

and solve for y,. In most cases, y; can be evaluated by using the Taylor series expansion.

Of course, there are other finite difference methods to numerically solve differential equations; one

such method is the famous Runge-Kutta method. Discussing all these methods is beyond the scope of this

report.

2.3 Finite Volume Method. Finally we address briefly the finite volume method. In the finite

volume method (Hyman, Knapp, and Scovel 1992), the average values of a function over local mesh cells
are taken as unknowns; discrete approximations of the divergence, gradient, and rotor (curl) operators are

defined using general forms of Stoke’s theorem.

To get a feel for the finite volume method, consider a physically motivated system of partial
differential equations derived from a limiting process applied to integral equations. For example, a
quantity p (charge density or fluid density) is conserved under the flow of a conservation law if the

amount of p contained in any fixed volume Q is due entirely to the flux of I (current density) across the

boundary 6(£2) of the volume €; one should realize that here the terms "volume" and "surface" are not
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necessarily restricted to just the three-dimensional (3-D) space. For the sake of simplicity, however, here

we do deal in the 3-D space, and the conservation law can be expressed in integral form as

%Lpdv - §7-0w, @23.1)
o(Q)

where d@is the surface element vector whose direction is outward normal to the boundary. Moving the
time derivative under the integral sign and applying the divergence (Gauss) theorem, equation (2.3.1) can

be rewritten as
L(a[ p+V-j)av=o. (232)

If we let the volume Q shrink to a point, we obtain the partial differential equation

op+V-j=0, (2.3.3)

providing that at every point p and I are differentiable.

When numerically solving equation (2.3.1) it is natural to stop the limiting process at the local mesh
spacing and solve (2.3.2) where the control volumes £ are the local mesh cells. Specifically, in a small

time-invariant 3-D control volume €2, we rewrite the integral equation (2.3.2) as
ad -
ot (p)aV3 + (V 'J)av3 =0,

where (~9),,3 and (V - ), 3 represent a 3-D cell average; the divergence theorem is applied in

-

computing (V . _])av3 by acting on face-average normal components of fluxes:
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(v --j‘)av3 = LV j dVvol

Vol (Q)

1 -
Vol () 6@

@ ¥ A (i), (2:34)

Here the time-independent control volume Q is bordered by mesh points. Its boundary is the union of

I(i=1,2,..,]1) distinct pieces, 6(Q) = Uc(Qi). Furthermore, A; is the area vector of the i th piece, and

(i;)av2 may be interpreted as the normal component of I over the i th piece given by

(avs = o § 7-de@y. (2.3.5)
1 o()

The central idea behind the finite volume method is to accurately approximate (j;),,, and use relation

(2.3.4) 1o define a discrete approximation of (V - -j)av3, which, in tum, defines d(p),,s/0t.

In fact, the finite volume method can be directly applied to time; integrating (2.3.2) fromt tot_ , ,

we obtain

f d:f P +V -3)dvel =0, (2.3.6)
t Q

n

or, using (2.3.4), one further obtains,
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'h +1
(p):v;I = (p):vii - f (V '3)av3 dt

th

[n +1

n 1 .
= (P)avg + m Zl: Ef Ai (Ji)aVZ dt. (237)
The fluxes associated with (j;),,, are assumed to be known as a function of time; they might be
approximated directly by incorporating past time levels in standard linear multistep methods (Hyman,

Knapp, and Scovel 1992); of course, there is nothing wrong in evaluating these fluxes by the finite
difference of the finite element method if, for example, I is given by some other equation (the

Schroedinger equation, for instance).

This was a simple "introductory” example intended to give a "flavor" and the basic idea of the finite
volume method. It is beyond the scope of this report to go into more details of this rather new and

complex method, which, at least presently, can be found only in research literature.
3. COMPARISONS OF METHODS

Today, both finite element and finite difference methods are used rather extensively in numerically
solving the most complex problems, as in calculating the electromagnetic fields for complex structures or
in calculating the electromagnetic field effects on structures with very complex geometries. However, it
is the finite element method that is today considered to be a superior method, particularly when the
question of efficiency is posed for solving a variety of practical problems. One of the main attractions
of this method is that once the method is set up, that is, the computer program is written which generates
the interpolation functions, it can be used for other problems by changing the input data. On a historical
note, the method was first developed in 1956 for the analysis of aircraft structural problems. Today, so
much work is done with the finite element method that, in fact, this method has become one of the

research areas of applied mathematics itself.

The finite difference method, of course, is much older than the finite volume method. In fact, it is
as old as differential calculus itself. This means that it was in use well before computers became

available. However, each advance in computer technology makes the finite difference method more
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interesting in that more and more complex problems can be treated. In fact, being "simpler” than the finite

element method, the finite difference method is quite often the preferred method when the accuracy of

results is not essential.

In fact, rather recently, at the Stanford Linear Accelerated Center, where the solutions of Maxwell’s
equations for electromagnetic fields propagating in cavities with symmetric periodic structures and
structures with axial symmetry were sought, it was found that the finite element method is much more

accurate than the finite difference method (Nelson 1992, 1993). Denoting generically with F the solution

for an electromagnetic field, one finds that the smallest values for |3F/F| are

|SF/F| = 1073, 1072,

for the finite difference and finite element methods, respectively. Here OF represents the deviation from
the experimentally measured field F. Furthermore, taking into account that the finite element method is
capable of finding rather accurately the solutions for electromagnetic fields, even when the structures have
sharp edges, one sees that, overall, the finite element method is superior to the finite difference method.
However, the finite element method, because it follows rigorous procedures, can be rather complex when
deriving numerical algorithms for solutions, particularly when compared to the finite difference method.
Hence, when analyzing technical and scientific problems, these two methods should not be considered as
mutually exclusive, but rather both of them should be used, depending on needed accuracy and urgency

of solutions.

As far as the finite volume method is concemed, its accuracy depends on specifics of other
computational methods that are used after the generalized Stoke’s theorem has been applied. The thing
to emphasize here is that the generalized Stoke’s theorem in the finite volume method effectively reduces
the number of computational dimensions; a solution that is being sought at a small volume (which mimics
a point) is reduced with the help of the generalized Stoke’s theorem to computations over sides bordering

a small volume.
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4. POTENTIAL APPLICATIONS, DISCUSSIONS, AND CONCLUSIONS

Finite volume and finite difference methods, no doubt, can be used to obtain adequate approximate
solutions of electromagnetic fields. In particular, one should be able to predict the effects of nuclear-burst-
generated electromagnetic effects on defense systems, such as the scattering of the electromagnetic pulse

off combat vehicles as a whole and electronic components, sensors, €tc., in particular.

One of the newer subjects where, in particular, the finite element method could be used is the
statistical modeling of the Gulf War Syndrome. The aim here is to obtain the probabalisitic formulation
of the syndrome itself. Specifically, for each unit associated with a particular geographic location based
on data from the U.S. Ammy & Joint Services Support Group and the Environmental Epidemiological
Service from the Veterans Administration, the soldier probability distribution function of symptoms (here
symptom means symptom and illness) would be constructed with the help of six finite element
interpolation functions (corresponding to six discrete symptoms). Because of these interpolation functions,
the soldier probability distribution function becomes an analytical function in symptom-variable. This,
in tumn, allows one to calculate the average soldier symptom as a function of the continuous symptom-
variable, allowing us to find the range of symptoms that very ill soldiers have. Tuming now to the
database we can rank specific symptoms according to the frequency of their occurrence. The six most
frequent ones define the syndrome which now the medical doctors can study to determine the common

causes of the Gulf War Syndrome for each particular geographic region.

Another new project where actually the finite volume method could be employed is the "Rotor Wash
Model" project. Here the idea is to develop analytical techniques which would replicate rotorcraft
aerodynamics at specified positions around the helicopter fuselage in order to predict the infiltration of
diverse kinds of agents on and into helicopters. It appears natural to model the flow of agents with the

finite volume method by employing the Stoke’s theorem when studying the flow of agents.

Finally, we notice that "Aerosol and Vapor Infiltration Modeling" is another important area where,
in addition to the finite element and finite difference methods, the finite volume method could play a very
important role. Here, one is striving to develop a predictive methodology that could determine levels of
vapor concentration and liquid deposition in and on a variety of structures. The fluid dynamics, with

which one is dealing here, are natural for utilization of the finite volume method. This again comes from




the fact that Stoke’s theorem, on which the finite volume method is based, enters very naturally into the

importance of the description of fluid motion.

Hopefully, the few examples mentioned here show the importance of the methods briefly exposed in
the main body of the text. It appears that the finite volume method is not yet widely accepted by the
computing community. The reason for this is that the finite volume method, when compared to the other
two methods, is not a "pure" method but rather a "composite” method consisting of Stoke’s theorem and
the finite element and/or the finite difference methods. Judging by the amount of literature available on
various methods (see the Appendix for details) it is evident that the finite element method is far the most

popular and perhaps, the most important approximation method for evaluations in vulnerability/ lethality

analysis.
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WASHINGTON DC 20310-0103

ASST SECY ARMY RESEARCH
DEVELOPMENT ACQUISITION
ATTN SARD ZP RM 2E661

103 ARMY PENTAGON
WASHINGTON DC 20310-0103

ASST SECY ARMY RESEARCH
DEVELOPMENT ACQUISITION
ATTN SARD ZS RM 3E448

103 ARMY PENTAGON
WASHINGTON DC 20310-0103

ASST SECY ARMY RESEARCH
DEVELOPMENT ACQUISITION
ATTN SARD ZT RM 3E374

103 ARMY PENTAGON
WASHINGTON DC 20310-0103

UNDER SEC OF THE ARMY
ATTN DUSA OR

RM 2E660

102 ARMY PENTAGON
WASHINGTON DC 20310-0102

ASST DEP CHIEF OF STAFF
OPERATIONS AND PLANS
ATTN DAMO FDZ RM 3A522
460 ARMY PENTAGON
WASHINGTON DC 20310-0460

DEPUTY CHIEF OF STAFF
OPERATIONS AND PLANS
ATTN DAMO SW RM 3C630
400 ARMY PENTAGON
WASHINGTON DC 20310-0400
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1

ARMY RESEARCH LABORATORY
ATTN AMSRL ST

DR FRASIER

2800 POWDER MILL RD

ADELPHI MD 20783-1197

ARMY RESEARCH LABORATORY
ATTN AMSRL SL

DR WADE

WSMR NM 88002-5513

ARMY RESEARCH LABORATORY
ATIN AMSRL SL E

MR MARES

WSMR NM 88002-5513

ARMY TRADOC ANL CIR
ATIN ATRC W

MR KEINTZ

WSMR NM 88002-5502

ARMY TRNG & DOCTRINE CMND
ATIN ATCD B
FT MONROE VA 23651

ABERDEEN PROVING GROUND

CDR USATECOM
ATTN: AMSTE-TA

CDR USAMSAA
ATIN: AMXSY-ST
AMXSY-D

DIR USARL

ATTN: AMSRL-SL, J WADE (433)
AMSRL-SL-I, M STARKS (433)
AMSRL-SL-C, W HUGHES (E3331)
AMSRL-SL-B, P DEITZ (328)

CDR CBDCOM
ATTN: TECHNICAL LIBRARY
BLDG E3330

DIR CBIAC
BLDG E3330, RM 150



NO. OF
COPIES ORGANIZATION

1 HQDA
DUSA OR
ROOM 2E660
102 ARMY PENTAGON
WASHINGTON DC 203100102

1 DEP CHIEF OF STAFF
OPERATIONS AND PLANS
ATTN DAMO SW ROOM 3C630
400 ARMY PENTAGON
WASHINGTON DC 20310-0400

1 COMMANDER
US ARMY MISSILE COMMAND
ATTN AMSTA CG
REDSTONE ARSENAL AL 35898-5000

1 DIRECTOR
US ARMY BALLISTIC MIS DEFNS
SYS CMND
ATTN ADVNCD TECHLGY CTR
PO BOX 1500
HUNTSVILLE AL 35807-3801

2 COMMANDER
USA STRTGC DEFNS CMND
ATIN CSSD SL C
CSSD SL S
HUNTSVILLE AL 35807-3801

1 COMMANDER
CECOM R&D TECH LIB
ATIN ASQNCELCISLR
FORT MONMOUTH NIJ 07703-5000

1 COMMANDER
US ARMY RESEARCH OFFICE
ATTN TECH LIB
PO BOX 12211

RESEARCH TRIANGLE PARK NC 27709-2211

1 COMMANDER
USA LOGISTICS MGMT CTIR
ATTN DEFNS LGSTCS STUDIES
FORT LEE VA 23801

1 COMMANDER
US ARMY NGIC
ATTN AMXST MC 3
220 SEVENTH ST NE
CHARLOTTESVILLE VA 22901-5396

49
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COPIES ORGANIZATION

1

DIRECTOR

USARL

ATTN AMSRL OP TL
WATERTOWN MA 02172-0001

DIRECTOR

USARL

ATIN AMSRL SL E G MARES
AMSRL SL EA R SHELBURNE
AMSRL SL EG J PALOMO
AMSRL SL EM R FLORES
AMSRL SL EP D ALVAREZ
AMSRL SL ES T ATHERTON
AMSRL SL EV DR K MORRISON
AMSRL SL CA R SUTHERLAND
WHITE SANDS MISSILE RANGE NM 88002-5513

DIRECTOR

USARL

ATTN AMSRL EP

M V GELNOVATCH

FT MONMOUTH NJ 07703-5601

DIRECTOR

USARL

ATTN AMSRL EP EF

DR M. DUTTA

FT MONMOUTH NJ 07703-5601

DIRECTOR

USARL

ATIN AMSRL SS V DEMONTE
ADELPHI MD 20783-1197

DIRECTOR

USARL

ATTN AMSRL SS IC

DR P EMMERMAN
ADELPHI MD 20783-1197

DIRECTOR

USARL

ATTN AMSRL SS IC

R WINKLER

ADELPHI MD 20783-1197

DIRECTOR

USARL

ATTN AMSRL WT NH
DR H E BRANDT
ADELPHI MD 20783-1197




NO. OF

COPIES ORGANIZATION

1

77

COMMANDANT
USA CMND AND GENL STAFF
FORT LEAVENWORTH KS 66027

DIRECTOR

INSTITUTE OF DEFNS ANLYS
ATIN LIBRARY

1801 BEAUREGARD ST
ALEXANDRIA VA 22311

ABERDEEN PROVING GROUND

DIR, USAERDEC
ATTN SCBRD RT

CDR, USACBDA
ATTN AMSCB CII

CDR, USAATC
ATTN STECS

DIR, USARL
ATTN AMSRL SL J SMITH
AMSRL SL BA

J MORRISSEY

J HANES

R KUNKEL

L ROACH
AMSRL SL BG A YOUNG
AMSRL SL BS

D BELY

T KLOPCIC
AMSRL SL BV

R SANDMEYER

W MERMAGEN JR
AMSRL SL C

W J HUGHES

J SEIGH

MAJ GILMAN
AMSRL SL CM

D FARENWALD

B RUTH

L DAVIS

L DELICIO

R JOLLIFFE

D SLOOP

R TYTUS

R ZUM BRUNNEN

E FIORAVANTE

M MAR

DR SOLN (30 CPS)

50
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AMSRL SL CO

D BAYLOR

R PROCHAZKA
AMSRL SL CS

J BEILFUSS

T FLORY

B SMITH

M SMITH

J FRANZ

T MAK

J NEALON

R PARSONS

M KAUFMAN

D MANYAK

R POLIMADEI

M BUMBAUGH

J CAPOBIANCO

D DAVIS
AMSRL SL I

R REITZ

D BASSETT

A YOUNG

M VOGEL

E PANUSKA

D HASKELL

J FEENEY

R ZIGLER
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